
HPCToolkit • DynInst
Open Source Tools From CScADS

hpctoolkit.org

Nathan Tallent

DOE Workshop for Industry Software Developers

John Mellor-Crummey Barton Miller

Center for Scalable Application Development Software

cscads.rice.edu

dyninst.org

March 31, 2011

Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org
file://localhost/Users/tallent/Documents/UW-Madison_logo.svg
file://localhost/Users/tallent/Documents/UW-Madison_logo.svg
http://hpctoolkit.org
http://hpctoolkit.org

2

Why Tools? “Why doesn’t my app work?”
• Complex architectures are hard to program

— multicore/manycore multi-socket nodes
• hardware threading, out-of-order pipeline, SIMD units

— multi-level memory hierarchies
• non-uniform latency memory and cache accesses

— heterogeneity: SIMD, GPUs
— massive scale: 200K cores

• Complex software is hard to monitor and analyze
— parallelism: threads, locks, synchronization, nested parallelism
— modularity: object-orientation, generics, meta-programming
— layers: composing libraries, multilingual apps, coupled apps
— compilers: transform code; may not achieve high performance

• How do I find bottlenecks? How do I find errors?
— tools must not only work, but deliver actionable insight

• insight that justifies specific actions

Thursday, March 31, 2011

Pinpoint and diagnose bottlenecks in parallel codes

The Role of Performance Tools

• Are there parallel scaling bottlenecks at any level?

• Are applications making the most of node performance?

• What are the rate limiting factors for an application?
— mismatch between application needs and system capabilities?

• memory bandwidth or latency?
• lock contention?
• communication bandwidth or latency?

• What is the expected benefit of fixing bottlenecks?

• What type and level of effort is necessary?
— tune existing implementation
— overhaul implementation to better match architecture capabilities
— new algorithms

3
Thursday, March 31, 2011

4

Performance Tools Challenges
• Deliver actionable insight

— pinpoint and explain problems in terms of source code
— pinpoint hot spots inefficiency

• Combine accurate & precise measurement
— attribute metrics to the statement, loop and data-object level
— avoid high overheads
— avoid systematic measurement error

• Measure configuration of interest, not a mock up
— large multi-lingual, fully optimized, parallel, production code
— binary-only libraries, partially stripped
— dynamic loading or static binaries

• Scale within and across nodes
— multithreaded codes
— large-scale parallelism (200K cores)

Thursday, March 31, 2011

HPCToolkit: Detailed Performance Metrics

1-2% overhead

costs for
• inlined procedures
• loops
• function calls in full context

Thursday, March 31, 2011

HPCToolkit Capabilities at a Glance

6

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with Data

Shift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org
Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org

 Precise measurement and attribution using on-the-fly
binary analysis - Best paper PLDI09

 Novel techniques to pinpoint & quantify (CCPE10)
- scalability losses within & across nodes (ICS07,SC09)
- inefficient multithreading (PPoPP09, IEEE Comp. 09)
- lock contention (PPoPP10)
- load imbalance (SC10)
- data centric issues (CGO11)

 Insight into transient behavior with sampling (ICS11)

 HPCToolkit released as supported product on Bull and
SciCortex systems; under evaluation by IBM

“Performance Tools for Leadership Computing” - John Mellor-Crummey, Rice University

ImpactObjec+ves	

 Accurately measure performance of parallel codes
on leadership computing systems

 Pinpoint and quantify losses both within and across
nodes in scalable parallel programs

 Provide actionable insight by tying losses and
opportunities to both code and data

Used HPCToolkit to help DOE science teams
understand and fix code performance problems
 Lock contention in MADNESS
 Data locality losses in S3D
 AMR scaling bottlenecks in FLASH
 Load imbalance in PFlotran simulations

User	
 interfaces	
 ,e	
 costs	
 to	
 code	
 and	
 display	
 behavior	
 over	
 ,me Accomplishments

ASCR SciDAC-2 Computer Science Highlight

execu,on	
 disturbed	
 by	

asynchronous	
 communica,on	

Thursday, March 31, 2011

HPCToolkit and Industry

8

• Bull
— ships HPCToolkit with systems

• SiCortex (low power clusters)
— shipped HPCToolkit with systems

• Samara Technology Group
— packages HPCToolkit as a key

tool used by its consultants

• Total R&D (energy)
— used HPCToolkit extensively in

performance studies of seismic code

• WesternGeco (energy)
— studied performance of seismic code

• IBM
— evaluating for POWER7 systems

Thursday, March 31, 2011

HPCToolkit at a Glance

9

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source
[hpcprof/mpi]

databasepresentation
[hpcviewer]

program
structure

Thursday, March 31, 2011

Dyninst: Analyze, instrument, and control binary
programs:

o Instrumentation: add tracing, checking, sandboxing,
monitoring, etc. to your already-compiled code

 Binary rewriting: patch an a.out/.exe/.so/.dll to add or
modify code.

 Dynamic instrumentation: add or remove instrumentation
code from a running program.

o Analysis: Binary code parsing, Control- and data-flow
analysis, symbol table access, instruction disassembly.

o Program Control: Create/attach to a process, start, stop,
event detection, read, and write process address space.

2The Deconstruction of Dyninst
Thursday, March 31, 2011

Guiding Principles
o Work on program binaries:

o don’t need source code, even for proprietary libraries.
o functions even if code is stripped (no symbol tables)

o Clean Abstractions
o Hide complexity
o Necessary for portability
o Quickly build new tools

o Portability
o Same interface across multiple systems
o System differences not visible

3The Deconstruction of Dyninst
Thursday, March 31, 2011

The Toolkits
DyninstAPI: overall package for binary program analysis,

instrumentation, and control (x86 32 and 64 bit, Power
32 and 64 bit, IBM BlueGene, Cray XT)

SymtabAPI: read, understand, and update program
symbol tables (PE/PDB, ELF/DWARF)

StackwalkerAPI: runtime walk of process stacks,
handling optimized code frame and exceptions.

ProcControlAPI: create/attach to process, monitor state
change events, control process, and read/write address
space (Linux, Windows, Cray XT, IBM BG)

4The Deconstruction of Dyninst
Thursday, March 31, 2011

The Toolkits

InstructionAPI: parse a machine instruction into fields,
providing a machine-independent representation.

ParseAPI: control- and data-flow analysis of the binary
program, even in the face of stripped code.

DataflowAPI: data dependence analysis of the binary
code, including forward and backwards slicing.

DynC API: generate program instrumentation code
sequences from C code snippets.

5The Deconstruction of Dyninst

• DynInst components are shipped by Cray (in ATP)
• DynInst has been shipped by IBM (in DPCL)
• SymTabAPI used by HPCToolkit

Thursday, March 31, 2011

CScADS Tools Technology Highlights
• HPCToolkit (BSD License)

— hpcrun call path profiler
— libmonitor library for process/thread monitoring
— hpcstruct binary analysis to recover program structure
— hpcprof analysis tool
— hpcviewer call path profile presentation tool
— hpctraceviewer call path trace presentation tool

• DynInst (LGPL License)
— dynamic binary instrumentation
— process control
— symbol table parsing and generation
— instruction encoding and decoding
— binary control-flow and data-flow analysis
— first and third party stack unwinding

14

hpctoolkit.org

dyninst.org

cscads.rice.edu
Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org

